我国不仅是一个水资源贫乏的国家,而且是一个水资源受污染严重的国家,78%的城市河段不适宜作饮用水源,50%的城市地下水受到污染,传统的城市给水处理技术已远远不能满足处理微污染水体的要求。生活饮用水水质标准如世界卫生组织 W HO有133项(其中有机物占89项),欧共体( E C)有61项,美国现行饮用水水质基本标准有88项,其中二级标准有15项,执行新标准的日本也有80项,我国卫生部2001年颁布了生活饮用水卫生规范,其中生活饮用水水质卫生规范中有96项指标,其中常规检验34项指标,非常规检验62项指标。众所周知,20世纪科技发展迅猛异常,八九十年代出现了大量合成有机物,还发现了各种有机物的新的有毒机理,这些不可能订入十几年前的水质标准。但是即使按现有的标准来衡量,全国共有9亿人饮用不符合饮用水标准的水。中国预防医学科学院对24个省、市、自治区的1534个监测点作长期调查,结果发现:20%的水样的色度、浊度、铁、锰、砷、氟超标,30%的水样的有机物污染物超标,46.3%—66.2%的水样的大肠杆菌超标。
2.水厂净化过程中产生。水厂沉淀池、滤池滤料层的含泥量中有机物的溶出与迁移会带来有机物,更为严重的是由于采用传统的加氯消毒工艺,尤其是水厂为了改进絮凝,提高滤池效率,保证杀菌效果,把加氯点放在混合井、滤前、滤后多点投氯,为氯与水中的有机物(如富里酸、腐殖酸)反应生成 T HMs等消毒副产物创造了条件。根据美国及日本的检测显示,自来水中氯仿含量均比原水中氯仿含量增加五六十倍以上,而且自来水中氯仿绝对值也较高;氯化消毒副产物中卤乙酸( H AAS)是国外近几年关注的重点,因为其“三致”作用较挥发性有机物强, H AAS的单位致癌风险也大大高于三卤甲烷。
3.自来水从水厂出来后,经过冗长的输水管道及水塔、水箱等设施,由于管网腐蚀、泄漏、接触污染,加上余氯与水中的有机物有时间进一步反应,会生成更多的 T HMs,这些会二次污染自来水,恶化了自来水水质。据北京市卫生防疫站的检测,由于二次污染,有15%的自来水超过饮用水标准。
美国水专家 M artin Fox博士对当今健康饮用水方面的研究成果进行了概括和总结,指出:喝含 T DS即矿物质和微量元素含量高的水的人,死于心脏病、癌症和慢性病的几率比喝含 T DS低的水低些;喝被污染的水和除盐水都会对健康造成伤害;人体需要从食物和饮水中补充微量元素和矿物质,人体从食物中获得的微量元素和矿物质通常不够,而水中的微量元素和矿物质要比食物中的更易、更好地被人体吸收、利用。结论中明确指出,健康的饮用水,应符合下列指标:硬度(理想的指标170mg/L左右)、TDS(理想的指标是300mg/L左右)和 pH(偏碱性)。因此,反渗透、离子交换等方法制得的纯水以及蒸馏水不是健康理想的饮用水。
饮用水的深度净化技术
目前,针对水源的微污染及给水厂的氯化消毒所引起的 T HMs增多的问题,国内外采取了许多措施,大致可分为二种:一是对氯化消毒副产物( D BP)的前驱物( T HMFP)加以控制,从而减少 D BP的生成,如通过生物预处理法、臭氧—活性炭法、空气吹脱法等方法处理后再进行氯化消毒[20];二是对传统的给水处理的出水———自来水进行深度净化,减少 D BP的含量,如采用分质供水(管道或桶装)、家用净水器净水等方法。
用于饮用水处理,活性炭可除嗅去色,并去除水中微量有害物质,如有机物、胶体物质、部队重金属、余氯等。因此活性炭被广泛地应用于家用净水器。活性炭净水器对自来水中色度、 T HMs、耗氧量、 D OC、余氯、 A mes致突变物质有一定的去除效果。但是其不足有三:出水细菌总数明显升高;亚硝酸盐浓度升高;炭的失效点不易判定。因此活性炭不宜单独用于饮用水处理,可以和其他方法结合使用,如活性炭—膜分离法。
人们对膜技术研制、开发的沿革,基本上是针对被处理对象来开发不同类型膜而发展起来的。利用膜技术处理饮用水,在世界上已建成70多个水厂,其中第一个水厂是在1987年美国的 K ey stone colo建成的微滤( M F)膜地面水处理厂,能力为105m3/d;目前规模最大的是1992年美国佛罗里达半岛建成,3.6万 m3/d,1992年法国的 B iarritz地面水处理厂,其能力为4800m3/d和Fongombauit地下水处理厂,其能力为4800m3/d;至于小型水处理装置就美国已达数百家,这种小型水处理装置首先是用于航空航天和高层人物的饮用水,现已普及到百姓。若从膜技术处理净化水和小型装置正式投入市场算起,中国至少落后发达国家25年以上;若从利用膜技术建立第一个净水厂算起约落后10年的时间。
五、纳滤水———21世纪的健康饮水
用于饮用水处理的膜工艺主要是压力驱动的膜,按照膜能有效地去除的污染物的大小来分类,可分为微滤( M F)、超滤( U F)、反渗透( R O)和纳滤( N F)等,它们的分离特点见下表。可见, M F、 UF的产水还不能将水中的有害小分子有机物质去除,因而不能单独用于纯净水制造;而 R O,它在分离过程中良莠不分,它可以去除水中全部溶解性物质,其产水亦不能符合人们健康的要求,而且其每产水一吨耗电3.5-4.5度。 NF膜早期称为松散反渗透膜,是80年代初继典型的 R O复合膜之后开发出来的。 N F膜介于 RO与 U F膜之间,它主要去除直径为1个纳米左右的溶质粒子,截留分子量为100—1000。例如, RO几乎对所有的溶质都有很高的脱除率, U F对几乎所有的离子都没有脱除作用,而 N F只对特定的溶质具有较高的脱除率。 N F膜由于其本身的特点———膜本体带有电荷性,这是使它在很低压力下仍具有较高脱盐性能和作为截留分子量为数百的膜也能脱除无机盐的重要原国,因此它十分适用于饮用水的深度净化。(见下表)
值得注意的是,美国从1992—1996年的4年中,纳滤膜装置增加500%,大大高于其他方法。而且对各种脱盐方法的经济成本进行的统计比较表明:无论是一次投资,还是运行、维修费用均以纳滤膜为最低。美国环保局( E PA)曾用大型装置证实了 N F脱除有机物及合成化学物的实际效果。日本在1994—1996年中重点开发以纳滤膜为核心,以脱除砂滤法不能脱除的溶解性微量有机物为目的的饮用水深度净化系统(“ MAC21”)。目前巴黎市郊的一座2800m3/d的生产纳滤膜水处理厂已成功地运转了1年多,其出水完全能满足欧共体新近颁布的有关消毒副产物的指标要求,出水 T OC低于0.2-0.3mg/L,生物稳定性好,能有效地防止输水管理网中细菌的繁殖。
在1994年马尼拉亚太地区国际水协会会议和1995年在巴黎召开的国际供水协会会议上,以美国奥兰多佛罗里达中心大学被誉为膜技术鼻祖的泰勒教授为首有25个国家300多位专家参加了膜处理技术专题研讨会。他们预测当水源具备一定的洁净条件,由 P AC(粉末活性炭)+微滤或超滤+纳滤即可取代全部水处理设施;未来的几年,低压膜技术在饮用水处理中有着广阔的前景。